THE 4TH KIAS WORKSHOP ON PARTICLE PHYSICS AND COSMOLOGY

ACCIDENTAL DARK MATTER: A CASE IN SCALE INVARIANT B-L MODEL

ZHAOFENG KANG, KIAS, SEOUL, 10/31/2014 BASED ON AN UNBORN PAPER, WITH P. KO, Y. ORIKAS AND XX YY

Outline

Matter Stability in the SM

Implanted to dark matter

* Without new gauge symmetry
* With gauged B-L

Matter stability in SM

* Proton is accidentally stable due to

Gauge and spacetime symmetries: $\mathrm{SU}(3) c^{*} \mathrm{SU}(2) L^{*} \mathrm{U}(1) \mathrm{y} *$ Poincare
Matter content: well arranged fermions and a Higgs doublet
Renormalizable: dimension-5 operators violating B \& L are absent

* SUSY: An example violating the SM structure

Adding new particles may be dangerous, e.g., squarks in SUSY

Implanted to dark matter (DM)

* Scale invariance (SI) and singlet scalar

Updating the SM spacetime symmetries by SI may justify the technique face of hierarchy problem
W. A. Bardeen, FERMILAB-CONF-95-391-T.

Accidental WIMP DM in the SI-SM: the nontrivial face of trivial real singlet DM via Higgs portal arxiv:1401.5609, Jun Guo and z. Kang

$$
-\mathcal{L}=\frac{\lambda}{2}\left(\Phi^{\dagger} \Phi\right)^{2}+\frac{\lambda_{i j}}{2} \Phi^{\dagger} \Phi S_{i} S_{j}+\frac{\lambda_{i j k l}}{4!} S_{i} S_{j} S_{k} S_{l}, \quad\left\{\begin{array}{l}
\text { SI kills cubic term } S_{i} S j S k, \text { thus giving rise to an accidental } Z_{2} . \\
\text { Scalar singlet is the unique candidate given EW-VEV is the } \\
\text { dominant source for the particle mass origin. }
\end{array}\right.
$$

* What if right-handed neutrinos are incorporated?

We need RHNs N to generate nonzero neutrino masses, but then we encounter Z_{2} breaking term $S N^{2}$

Implanted to dark matter (DM)

* Beautiful rescue by $U(1) B-\llcorner$

Accidental DM needs it to forbid $S N^{2}$
RHNs need it to gain legitimacy (by virtue of anomaly cancelation)
Scale invariance needs it to break SI (by Coleman-Weinberg approach)

* The minimal scale invariant $B-L$ model (SIBL)
S. Iso, N. Okada and Y. Orikasa, Phys. Lett. B 676, 81 (2009)
$\mathcal{L}=V(H, \Phi)+\left(\frac{1}{2} \lambda_{N, i} \Phi \bar{N}_{i}^{c} N_{i}+Y_{N, i j} \bar{\ell} H^{\dagger} N+\right.$ h.c. $)+\mathcal{L}_{\mathrm{SM}}$

* Accidental Z_{2} real singlet DM revives

$$
\mathcal{L}_{D M}=\frac{1}{2} \lambda_{g h} S^{2}\left(H^{\dagger} H\right)+\frac{1}{2} \lambda_{g \phi} S^{2}\left(\Phi^{\dagger} \Phi\right)+\frac{\lambda_{g}}{4} S^{4} .
$$

Implanted to dark matter (DM)
 * Clear ways to dark matter relic density

Old story: Higgs-portal \& New scenario: Φ-portal

1. Turn off the Higgs-portal, then DM becomes invisible at LUX/XENON
2. Mass origin and interaction of DM are "unified" in this portal
3. PGSB can be naturally lighter than DM, so DM annihilate into them
4. Two parameters model. A large coupling \& smaller VEV are needed...next page:

Implanted to dark matter (DM)

* More about Ф-portal

A large VEV < $\Phi>$ above 5 TeV

 from the LHC bound on di-lepton resonance, produced by$$
q \bar{q} \rightarrow Z^{\prime} \rightarrow e^{+} e^{-}
$$

DM triggers SI spontaneously breaking?!!

$$
\begin{aligned}
& \text { A large } \lambda_{s \phi}^{2} S^{2}|\Phi|^{2} \text { means DM may dominate over } Z^{\prime} \text { ' in the contributions to the CW effective potential } \\
& V\left(\phi_{\mathrm{cl}}\right)=A \phi_{\mathrm{cl}}^{4}+B \phi_{\mathrm{cl}}^{4} \log \frac{\phi_{\mathrm{cl}}^{2}}{Q^{2}} \\
& B=\frac{1}{64 \pi^{2}}\left(3 \times Q_{\Phi}^{4} g_{B-L}^{4}-2 \sum_{i}\left(\lambda_{N, i} / \sqrt{2}\right)^{4}\right)<\Delta B=+\frac{1}{64 \pi^{2}} \frac{\lambda_{s \phi}^{2}}{2}
\end{aligned}
$$

Implanted to dark matter (DM)

* B-L charged case: Accidental Z_{3}

Scalar S_{X} with peculiar charge like $X=1.11$ will not be considered
The only nontrivial case is $X= \pm 2 / 3$

$$
\mathcal{L}_{Z_{3}}=\lambda_{1}\left|S_{X}\right|^{2}|\Phi|^{2}+\left(\frac{\lambda_{3}}{3} \Phi S_{X}^{3}+\text { c.c. }\right)+\lambda_{2}\left|S_{X}\right|^{2}|H|^{2}+V(H, \Phi) .
$$

* Importance of $S_{x}^{3} \Phi$ dynamics

Separating DM mass generation from annihilation

1. Z^{\prime} is almost irrelevant in DM annihilating, because of the LHC constraint on Z^{\prime}

$$
\left\langle\sigma_{S S^{*} \rightarrow Z^{\prime} \rightarrow \bar{f}^{\prime}} v\right\rangle \sim \frac{v^{2}}{64 \pi} \frac{g_{B-L}^{4}}{m_{Z^{\prime}}^{4}} m_{\mathrm{DM}}^{2}<10^{-3}\left(\frac{m_{\mathrm{DM}}}{1 \mathrm{TeV}}\right)^{2} \mathrm{pb}
$$

2. By contrast, the semi-annihilation is not suppressed by large VEV < $>$

$$
\left\langle\sigma_{S S \rightarrow S^{*}+\mathrm{PGSB}} v\right\rangle \sim \frac{1}{64 \pi} \frac{\lambda_{3}^{2}}{m_{S}^{2}}
$$

Conclusions

* Why is dark matter stabile is a basic question. Our answer, motivated by proton stability in SM, is that it is accidentally stable due to the fundamental symmetries and field content of the model.
* We implement this idea in the scale invariant gauged B-L models, getting an accidental $Z_{2}\left(Z_{3}\right)$ symmetry for a real singlet scalar (B-L charged scalar). They can have good dark matter phenomenologies.

